Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Epidemiol Infect ; 151: e34, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2263361

RESUMEN

The purpose of this study was to analyse the clinical characteristics of patients with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) PCR re-positivity after recovering from coronavirus disease 2019 (COVID-19). Patients (n = 1391) from Guangzhou, China, who had recovered from COVID-19 were recruited between 7 September 2021 and 11 March 2022. Data on epidemiology, symptoms, laboratory test results and treatment were analysed. In this study, 42.7% of recovered patients had re-positive result. Most re-positive patients were asymptomatic, did not have severe comorbidities, and were not contagious. The re-positivity rate was 39%, 46%, 11% and 25% in patients who had received inactivated, mRNA, adenovirus vector and recombinant subunit vaccines, respectively. Seven independent risk factors for testing re-positive were identified, and a predictive model was constructed using these variables. The predictors of re-positivity were COVID-19 vaccination status, previous SARs-CoV-12 infection prior to the most recent episode, renal function, SARS-CoV-2 IgG and IgM antibody levels and white blood cell count. The predictive model could benefit the control of the spread of COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Prueba de COVID-19 , Reacción en Cadena de la Polimerasa
2.
Front Public Health ; 8: 604870, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1063368

RESUMEN

Objective: To clarify the correlation between temperature and the COVID-19 pandemic in Hubei. Methods: We collected daily newly confirmed COVID-19 cases and daily temperature for six cities in Hubei Province, assessed their correlations, and established regression models. Results: For temperatures ranging from -3.9 to 16.5°C, daily newly confirmed cases were positively correlated with the maximum temperature ~0-4 days prior or the minimum temperature ~11-14 days prior to the diagnosis in almost all selected cities. An increase in the maximum temperature 4 days prior by 1°C was associated with an increase in the daily newly confirmed cases (~129) in Wuhan. The influence of temperature on the daily newly confirmed cases in Wuhan was much more significant than in other cities. Conclusion: Government departments in areas where temperatures range between -3.9 and 16.5°C and rise gradually must take more active measures to address the COVID-19 pandemic.


Asunto(s)
Aire , COVID-19 , Clima , Temperatura , COVID-19/epidemiología , COVID-19/transmisión , China , Ciudades , Humanos
3.
Front Med (Lausanne) ; 7: 556818, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-961637

RESUMEN

Background: Coronavirus disease (COVID-19) has swept around the globe and led to a worldwide catastrophe. Studies examining the disease progression of patients with non-severe disease on admission are scarce but of profound importance in the early identification of patients at a high risk of deterioration. Objectives: To elucidate the differences in clinical characteristics between patients with progressive and non-progressive COVID-19 and to determine the risk factors for disease progression. Study design: Clinical data of 365 patients with non-severe COVID-19 from 1 January 2020 to 18 March 2020 were retrospectively collected. Patients were stratified into progressive and non-progressive disease groups. Univariate and multivariate logistic regression analyses were performed to determine the independent risk factors for disease progression. Results: Compared with patients with non-progressive disease, those who progressed to severe COVID-19 were older and had significantly decreased lymphocyte and eosinophil counts; increased neutrophil and platelet counts; lower albumin levels; higher levels of lactate dehydrogenase, C-reactive protein (CRP), creatinine, creatinine kinase, and urea nitrogen; and longer prothrombin times. Hypertension, fever, fatigue, anorexia, bacterial coinfection, bilateral patchy shadowing, antibiotic and corticosteroid administration, and oxygen support had a significantly higher incidence among patients with progressive disease. A significantly longer duration of hospital stay was also observed in patients with progressive disease. Bilateral patchy shadowing (OR = 4.82, 95% CI: 1.33-17.50; P = 0.017) and elevated levels of creatinine (OR =6.24, 95% CI: 1.42-27.40; P = 0.015), and CRP (OR = 7.28, 95% CI: 2.56-20.74; P < 0.001) were independent predictors for disease progression. Conclusion: The clinical characteristics of patients with progressive and non-progressive COVID-19 were significantly different. Bilateral patchy shadowing and increased levels of creatinine, and CRP were independent predictors of disease progression.

4.
Front Bioeng Biotechnol ; 8: 898, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-732918

RESUMEN

OBJECTIVES: Coronavirus disease 2019 (COVID-19) is sweeping the globe and has resulted in infections in millions of people. Patients with COVID-19 face a high fatality risk once symptoms worsen; therefore, early identification of severely ill patients can enable early intervention, prevent disease progression, and help reduce mortality. This study aims to develop an artificial intelligence-assisted tool using computed tomography (CT) imaging to predict disease severity and further estimate the risk of developing severe disease in patients suffering from COVID-19. MATERIALS AND METHODS: Initial CT images of 408 confirmed COVID-19 patients were retrospectively collected between January 1, 2020 and March 18, 2020 from hospitals in Honghu and Nanchang. The data of 303 patients in the People's Hospital of Honghu were assigned as the training data, and those of 105 patients in The First Affiliated Hospital of Nanchang University were assigned as the test dataset. A deep learning based-model using multiple instance learning and residual convolutional neural network (ResNet34) was developed and validated. The discrimination ability and prediction accuracy of the model were evaluated using the receiver operating characteristic curve and confusion matrix, respectively. RESULTS: The deep learning-based model had an area under the curve (AUC) of 0.987 (95% confidence interval [CI]: 0.968-1.00) and an accuracy of 97.4% in the training set, whereas it had an AUC of 0.892 (0.828-0.955) and an accuracy of 81.9% in the test set. In the subgroup analysis of patients who had non-severe COVID-19 on admission, the model achieved AUCs of 0.955 (0.884-1.00) and 0.923 (0.864-0.983) and accuracies of 97.0 and 81.6% in the Honghu and Nanchang subgroups, respectively. CONCLUSION: Our deep learning-based model can accurately predict disease severity as well as disease progression in COVID-19 patients using CT imaging, offering promise for guiding clinical treatment.

5.
EBioMedicine ; 57: 102880, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-633891

RESUMEN

BACKGROUND: Information regarding risk factors associated with severe coronavirus disease (COVID-19) is limited. This study aimed to develop a model for predicting COVID-19 severity. METHODS: Overall, 690 patients with confirmed COVID-19 were recruited between 1 January and 18 March 2020 from hospitals in Honghu and Nanchang; finally, 442 patients were assessed. Data were categorised into the training and test sets to develop and validate the model, respectively. FINDINGS: A predictive HNC-LL (Hypertension, Neutrophil count, C-reactive protein, Lymphocyte count, Lactate dehydrogenase) score was established using multivariate logistic regression analysis. The HNC-LL score accurately predicted disease severity in the Honghu training cohort (area under the curve [AUC]=0.861, 95% confidence interval [CI]: 0.800-0.922; P<0.001); Honghu internal validation cohort (AUC=0.871, 95% CI: 0.769-0.972; P<0.001); and Nanchang external validation cohort (AUC=0.826, 95% CI: 0.746-0.907; P<0.001) and outperformed other models, including CURB-65 (confusion, uraemia, respiratory rate, BP, age ≥65 years) score model, MuLBSTA (multilobular infiltration, hypo-lymphocytosis, bacterial coinfection, smoking history, hypertension, and age) score model, and neutrophil-to-lymphocyte ratio model. The clinical significance of HNC-LL in accurately predicting the risk of future development of severe COVID-19 was confirmed. INTERPRETATION: We developed an accurate tool for predicting disease severity among COVID-19 patients. This model can potentially be used to identify patients at risks of developing severe disease in the early stage and therefore guide treatment decisions. FUNDING: This work was supported by the National Nature Science Foundation of China (grant no. 81972897) and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2015).


Asunto(s)
Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/patología , Neumonía Viral/diagnóstico , Neumonía Viral/patología , Índice de Severidad de la Enfermedad , Betacoronavirus , Proteína C-Reactiva/análisis , COVID-19 , Síndrome de Liberación de Citoquinas/patología , Femenino , Humanos , Hipertensión/patología , L-Lactato Deshidrogenasa/análisis , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Neutrófilos/citología , Pandemias , Pronóstico , Estudios Retrospectivos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA